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Chemical potential and activity of ionic solutions/salts  
There is an important point to consider in the context of salt solutions. For a dilute aqueous solution 
containing say sodium chloride, osmotic and colligative properties confirm that for each mole of sodium 
chloride the aqueous solution contains (almost exactly) two moles of solutes. These observations result in an 
added complexity in that chemists describe the solute, sodium chloride in two ways. In one description there 
is one solute – ‘sodium chloride’. In another description there are two solutes sodium ions and chloride ions. 
The latter description is certainly attractive because we can ring the changes through a series of solutes: 
NaCl → NaBr → KCl → KBr → ⋯. Here we change in stepwise fashion one chemical substance in the salt to 
produce a new solute. There is, however, one crucial condition. Aqueous solutions are electrically neutral 
although the solutions contain ions.  Therefore, the total charge on all cations equals in magnitude the total 
charge on all anions in the same solution. There is, therefore, a major problem. In fact, a common procedure 
involves estimating the properties of single ions but then in the last stage of the analysis we pull the derived 
single ion properties together to describe the properties of a given salt solution. In the following we will 
discuss ionic solutions containing the species 𝐵 that yields the ions 

𝐵 ≡ 𝑀𝜈+

𝑧+𝑋𝜈−
𝑧−  

Here 𝑧+ and 𝑧− are the charges, and 𝜈+ and 𝜈− are the number of cations and anions, respectively, for each 
formula unit of 𝐵. Such solutions differ strongly from regular solutions because even at very small 
concentration no ideal behavior is found. Again, deviation from the ideal case as described by 

𝜇 = 𝜇0 + 𝑅𝑇 ln
𝑝

𝑝0
 

are incorporated by 

𝜇𝐵 = 𝜇𝐵
0 + 𝑅𝑇 ln

𝑚𝐵

𝑚0
+ 𝑅𝑇 ln 𝛾𝐵 ≡ 𝜈+𝜇+ + 𝜈−𝜇−. 

Here 𝛾 is the activity coefficient and 𝑚0 is the standard molality (i.e., 1 mol/kg). Thus, 𝛾 = 1 represents the 
ideal case. Using the activity, 
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𝑎 = (𝑚/𝑚0)𝛾 
the chemical potentials for both components are 

𝜇+ = 𝜇+
0 + 𝑅𝑇 ln

𝑚+

𝑚0
+ 𝑅𝑇 ln 𝛾+       and      𝜇− = 𝜇−

0 + 𝑅𝑇 ln
𝑚−

𝑚0
+ 𝑅𝑇 ln 𝛾− 

leading to  

𝜇𝐵 = 𝜈+𝜇+ + 𝜈−𝜇− = 𝜈+𝜇+
0 + 𝜈−𝜇−

0 + 𝑅𝑇 ln (
𝑚+

𝑚0
)
𝜈+
(
𝑚−

𝑚0
)
𝜈−
+ 𝑅𝑇 ln 𝛾+

𝜈+𝛾−
𝜈− . 

We will see later that all parameters but 𝛾+ and 𝛾− can be extracted from experiments. Defining the 

geometric mean of molality, 𝑚± = (𝑚+
𝜈+𝑚−

𝜈−)
1 𝜈⁄

 and the geometric mean for the activity coefficient 𝛾± =

(𝛾+
𝜈+𝛾−

𝜈−)
1 𝜈⁄

, with 𝜈 = 𝜈+ + 𝜈−, we get, 

𝜇𝐵 = 𝜈+𝜇+
0 + 𝜈−𝜇−

0 + 𝑅𝑇 ln 𝛾± (
𝑚±

𝑚0
)
𝜈

= 𝜇𝐵
0 + 𝜈𝑅𝑇 ln 𝛾±

𝑚±

𝑚0
 

Only 𝛾± can be extracted from experiments. According to the definition, 𝑎 = (𝑚/𝑚0)𝛾, we find for the 
activity 

𝑎𝐵 = 𝑎+
𝜈+𝑎−

𝜈− = (𝛾±
𝑚±

𝑚0
)
𝜈

= 𝛾±
𝜈
𝑚+

𝜈+𝑚−
𝜈−

(𝑚0)𝜈
 

With 𝑚+ = 𝜈+𝑚𝐵 and 𝑚− = 𝜈−𝑚𝐵, we get from the last equation, 

𝑎𝐵 = (𝛾±
𝑚±

𝑚0
)
𝜈

= 𝛾±
𝜈
(𝜈+𝑚𝐵)

𝜈+(𝜈−𝑚𝐵)
𝜈−

(𝑚0)𝜈
 

Thus, for NaCl, 𝑎𝑁𝑎𝐶𝑙 = 𝑎Na+𝑎Cl− = 𝛾±
2(𝑚NaCl 𝑚

0⁄ )2. Similarly, for Fe(ClO4)3, 𝑎Fe(ClO4)3 = 𝑎𝐹𝑒3+𝑎𝐶𝑙𝑂4−
3 =

27𝛾±
4(𝑚Fe(ClO4)3 𝑚0⁄ )

4
, where we have used,  

𝑚Fe3+ = 𝑚Fe(ClO4)3;𝑚ClO4
− = 3𝑚Fe(ClO4)3 

Thus, the key-point is always how to calculate (or measure) 𝛾±. One such method to evaluate 𝛾±, 
theoretically, is to use the Debye-Hückel theory. 
 
 
Debye-Hückel theory for strong electrolytes: The electrical potential of ions in solution 
Postulate: Every ion may be considered as being surrounded by an ionic atmosphere of opposite sign. 

 
Imagine a positive ion situated at the point 𝐴. Consider a small volume element 𝑑𝑣 at the end of the radius 
vector 𝑟. The distance 𝑟 is supposed to be of the order of 1 100⁄  of the ion diameter. Due to the thermal 
motion of the ions, there will sometimes be an excess of positive and sometimes an excess of negative ions 
in the volume element 𝑑𝑣. Time-average will show, 𝑑𝑣 to have a negative charge density (positive ion at 𝐴). 
Net charge of the atmosphere is equal in magnitude but opposite in sign to that of the ion at 𝐴. Charge 
density greater in the immediate vicinity of the ion at 𝐴; falls off as 𝑟 ↑. 
Say, 𝜓 =  the electrical potential in the centre of 𝑑𝑣. The work involved to bring a positive ion from ∞ to the 
centre of 𝑑𝑣 = 𝑧+𝑒𝜓. The work involved to bring a negative ion from ∞ to the centre of 𝑑𝑣 = −𝑧−𝑒𝜓.  
𝑧+ =  numerical value (magnitude only) of the valences of the positive ions. 
𝑧− =  numerical value (magnitude only) of the valences of the negative ions. 
𝑒 =  the electronic charge 
Say, the Boltzmann law is applicable for the distribution of particles in a field of varying potential energy. 
𝑑𝑛+ =  time-average numbers of positive ions present in the volume element 𝑑𝑣, 

𝑑𝑛+ = 𝑛+𝑒
−(𝑧+𝑒𝜓 𝑘𝑇⁄ )𝑑𝑣 = 𝑛+𝑒

−𝑧+𝑒𝜓 𝑘𝑇⁄ 𝑑𝑣 
𝑑𝑛− =  time-average numbers of negative ions present in the volume element 𝑑𝑣, 
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𝑑𝑛− = 𝑛−𝑒
−(−𝑧−𝑒𝜓 𝑘𝑇⁄ )𝑑𝑣 = 𝑛−𝑒

𝑧−𝑒𝜓 𝑘𝑇⁄ 𝑑𝑣 
𝑛+ =  total number of positive ions per unit volume of the solution 
𝑛− =  total number of negative ions per unit volume of the solution 
If 𝜌 =  (electrical) charge density, that is, the net charge per unit volume, then in the given volume element 
𝑑𝑣, it is 

𝜌 =
𝑒(𝑧+𝑑𝑛+ − 𝑧−𝑑𝑛−)

𝑑𝑣
= 𝑒(𝑛+𝑧+𝑒

−𝑧+𝑒𝜓 𝑘𝑇⁄ − 𝑛−𝑧−𝑒
𝑧−𝑒𝜓 𝑘𝑇⁄ ) 

For a uni-univalent (1: 1) electrolyte, 𝑧+ = 𝑧− = 1 and to maintain electrical neutrality, 𝑛+ = 𝑛− = 𝑛, so 
that, for the 1: 1 electrolytes, 

𝜌1:1 = 𝑛𝑒(𝑒−𝑒𝜓 𝑘𝑇⁄ − 𝑒𝑒𝜓 𝑘𝑇⁄ ) = 𝑛𝑒(𝑒−𝑥 − 𝑒𝑥),  with 𝑥 = 𝑒𝜓 𝑘𝑇⁄  

Note that,  

𝑒−𝑥 = 1 − 𝑥 +
𝑥2

2!
−
𝑥3

3!
+ ⋯ ; 𝑒𝑥 = 1 + 𝑥 +

𝑥2

2!
+
𝑥3

3!
+ ⋯ 

Therefore,  

𝑒−𝑥 − 𝑒𝑥 = −2𝑥 − 2
𝑥3

3!
− 2

𝑥5

5!
−⋯ = −2𝑥 (1 +

𝑥2

3!
+
𝑥4

5!
+ ⋯) 

Hence, 

𝜌1:1 = 𝑛𝑒(𝑒−𝑥 − 𝑒𝑥) = −2𝑥𝑛𝑒 (1 +
𝑥2

3!
+
𝑥4

5!
+ ⋯) = −

𝑒2𝜓

𝑘𝑇
2𝑛 (1 +

𝑥2

3!
+
𝑥4

5!
+ ⋯) 

If it is assumed that 𝑥 = 𝑒𝜓 𝑘𝑇⁄ ≪ 1, then, 

𝜌1:1 = −
𝑒2𝜓

𝑘𝑇
2𝑛 (1 +

𝑥2

3!
+
𝑥4

5!
+ ⋯) ≈ −

𝑒2𝜓

𝑘𝑇
2𝑛 

However, the situation is not so simple for a general 𝑥: 𝑦 electrolyte. For the general electrolyte, we have 
seen that, 

𝜌 = 𝑒(𝑛+𝑧+𝑒
−𝑧+𝑒𝜓 𝑘𝑇⁄ − 𝑛−𝑧−𝑒

𝑧−𝑒𝜓 𝑘𝑇⁄ ) = 𝑒(𝑛+𝑧+𝑒
−𝑧+𝑥 − 𝑛−𝑧−𝑒

𝑧−𝑥), 

with 𝑥 = 𝑒𝜓 𝑘𝑇⁄ . Now, expanding the two exponential terms separately in Taylor’s series, we get, 

𝜌 = 𝑒 [𝑛+𝑧+ (1 − 𝑧+𝑥 +
𝑧+
2𝑥2

2!
−⋯) − 𝑛−𝑧− (1 + 𝑧−𝑥 +

𝑧−
2𝑥2

2!
+ ⋯)] 

Therefore, from,  

𝜌 = 𝑒 [𝑛+𝑧+ (1 − 𝑧+𝑥 +
𝑧+
2𝑥2

2!
−⋯) − 𝑛−𝑧− (1 + 𝑧−𝑥 +

𝑧−
2𝑥2

2!
+ ⋯)] 

upon neglecting the terms of higher powers (and retaining the linear terms only), 
𝜌 ≈ 𝑒[𝑛+𝑧+(1 − 𝑧+𝑥) − 𝑛−𝑧−(1 + 𝑧−𝑥)] 

Hence, 
𝜌 ≈ 𝑒[𝑛+𝑧+ − 𝑛+𝑧+

2𝑥 − 𝑛−𝑧− − 𝑛−𝑧−
2𝑥] = 𝑒[(𝑛+𝑧+ − 𝑛−𝑧−) − (𝑛+𝑧+

2 + 𝑛−𝑧−
2)𝑥] 

The electrolyte solution is homogeneous (and electrically neutral, as well), so that (𝑛+𝑧+ − 𝑛−𝑧−) = 0. 

∴ 𝜌 = −𝑒𝑥(𝑛+𝑧+
2 + 𝑛−𝑧−

2) = −
𝑒2𝜓

𝑘𝑇
(𝑛+𝑧+

2 + 𝑛−𝑧−
2) 

Thus, for the most general case, where one may have multiple electrolytes, and so many different kinds of 
ions, 

𝜌 = −
𝑒2𝜓

𝑘𝑇
∑𝑛𝑖𝑧𝑖

2

𝑖

 

where, 𝑛𝑖 and 𝑧𝑖  represent the number density and valence of the ions of 𝑖th kind. 
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However, the situation is not so simple for a general 𝑥: 𝑦 electrolyte. For the general electrolyte, we have 
seen that, 

𝜌 = 𝑒(𝑛+𝑧+𝑒−𝑧+𝑒𝜓 𝑘𝑇⁄ − 𝑛−𝑧−𝑒𝑧−𝑒𝜓 𝑘𝑇⁄ ) = 𝑒(𝑛+𝑧+𝑒−𝑧+𝑥 − 𝑛−𝑧−𝑒𝑧−𝑥), 

with 𝑥 = 𝑒𝜓 𝑘𝑇⁄ . Now, expanding the two exponential terms separately in Taylor’s series, we get, 

𝜌 = 𝑒 [𝑛+𝑧+ (1 − 𝑧+𝑥 +
𝑧+
2𝑥2

2!
− ⋯) − 𝑛−𝑧− (1 + 𝑧−𝑥 +

𝑧−
2𝑥2

2!
+ ⋯)] 

Therefore, with the assumption that 𝑥 = 𝑒𝜓 𝑘𝑇⁄ ≪ 1, upon neglecting the terms of higher powers (and 
retaining the linear terms only), 

𝜌 ≈ 𝑒[𝑛+𝑧+(1 − 𝑧+𝑥) − 𝑛−𝑧−(1 + 𝑧−𝑥)] 
Hence, 

𝜌 ≈ 𝑒[𝑛+𝑧+ − 𝑛+𝑧+
2𝑥 − 𝑛−𝑧− − 𝑛−𝑧−

2𝑥] = 𝑒[(𝑛+𝑧+ − 𝑛−𝑧−) − (𝑛+𝑧+
2 + 𝑛−𝑧−

2)𝑥] 
The electrolyte solution is homogeneous (and electrically neutral, as well), so that (𝑛+𝑧+ − 𝑛−𝑧−) = 0. 

∴ 𝜌 = −𝑒𝑥(𝑛+𝑧+
2 + 𝑛−𝑧−

2) = −
𝑒2𝜓

𝑘𝑇
(𝑛+𝑧+

2 + 𝑛−𝑧−
2) 

Thus, for the most general case, where one may have multiple electrolytes, and so many different kinds of 
ions, 

𝜌 = −
𝑒2𝜓

𝑘𝑇
∑𝑛𝑖𝑧𝑖

2

𝑖

 

where, 𝑛𝑖 and 𝑧𝑖  represent the number density and valence of the ions of 𝑖th kind. Both 𝜌 and 𝜓 are 
unknowns, and to know any one of them, another relation between them is needed. One of the fundamental 
laws of electrostatics (often called Maxwell’s first equation) says that, 

∇⃗⃗ ⋅ 𝐸⃗ =
4𝜋𝜌

𝐷
 

where 𝐸⃗  is the electric field vector, 𝜌 the charge density (measured per unit volume) as before, and 𝐷 is the 

dielectric constant of the medium. The vector, ∇⃗⃗  is the gradient vector, and is defined as, 

∇⃗⃗ = 𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
 

Now, 𝐸⃗  is just −∇⃗⃗ 𝜓 (just like the force being the gradient of the potential energy), and therefore, 

∇⃗⃗ ⋅ 𝐸⃗ =
4𝜋𝜌

𝐷
⇒ ∇⃗⃗ ⋅ ∇⃗⃗ 𝜓 = −

4𝜋𝜌

𝐷
 

Now, 

∇⃗⃗ ⋅ ∇⃗⃗ = (𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
) ⋅ (𝑖̂

𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
) =

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
= ∇2 

where, ∇2 is the Laplacian function. Thus, we have, 

∇2𝜓 = −
4𝜋𝜌

𝐷
 

This equation is known as the Poisson equation (in electrostatics). Thus, for the most general case, where 
one may have multiple electrolytes, and so many kinds of ions, 

𝜌 = −
𝑒2𝜓

𝑘𝑇
∑𝑛𝑖𝑧𝑖

2

𝑖

 

where, 𝑛𝑖 and 𝑧𝑖  represent the number density and valence of the ions of 𝑖th kind. From the Poisson equation 
(in electrostatics), we have, 

∇2𝜓 = −
4𝜋𝜌

𝐷
 

The Poisson equation is a partial differential equation (PDE) in three variables. We realize that the ion and its 
atmosphere, in the absence of any external electric field, is overall a spherically symmetric entity. Therefore, 
it will be mathematically easier to deal with the Poisson equation if we express it in the spherical polar 
coordinates. 
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𝑥 = 𝑟 sin 𝜃 cos𝜙 ; 𝑦 = 𝑟 sin 𝜃 sin𝜙 ;  𝑧 = 𝑟 cos 𝜃 

The Laplacian function in Cartesian coordinates, 

∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 

becomes, 

∇2=
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) +

1

𝑟2 sin𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕

𝜕𝜃
) +

1

𝑟2 sin2 𝜃

𝜕2

𝜕𝜙2
 

Since the distribution of potential about any point in the electrolyte must be spherically symmetric, the terms 
having dependence on the angular coordinates, 𝜃 and 𝜙 are all zero. Therefore, under spherical symmetry, 

∇2=
1

𝑟2

𝑑

𝑑𝑟
(𝑟2

𝑑

𝑑𝑟
), 

so that the Poisson equation becomes, 
1

𝑟2

𝑑

𝑑𝑟
(𝑟2

𝑑

𝑑𝑟
)𝜓 = −

4𝜋𝜌

𝐷
 

We have already seen that, 

𝜌 = −
𝑒2𝜓

𝑘𝑇
∑𝑛𝑖𝑧𝑖

2

𝑖

 

so that,  
1

𝑟2

𝑑

𝑑𝑟
(𝑟2

𝑑

𝑑𝑟
)𝜓 =

4𝜋𝑒2

𝐷𝑘𝑇
𝜓 ∑𝑛𝑖𝑧𝑖

2

𝑖

= 𝜅2𝜓, 

where the quantity 𝜅 is defined as, 

𝜅 = (
4𝜋𝑒2

𝐷𝑘𝑇
∑𝑛𝑖𝑧𝑖

2

𝑖

)

1 2⁄

 

Thus, the Poisson-Boltzmann equation is 
1

𝑟2

𝑑

𝑑𝑟
(𝑟2

𝑑𝜓

𝑑𝑟
) = 𝜅2𝜓 

How do we solve the Poisson-Boltzmann equation? Let us define a new variable 𝛽(𝑟), as 𝜓(𝑟) = 𝛽(𝑟) 𝑟⁄ . 

∴
𝑑𝜓

𝑑𝑟
=

𝑑

𝑑𝑟

𝛽

𝑟
= −

𝛽

𝑟2
+

1

𝑟

𝑑𝛽

𝑑𝑟
⇒ 𝑟2

𝑑𝜓

𝑑𝑟
= −𝛽 + 𝑟

𝑑𝛽

𝑑𝑟
 

∴
1

𝑟2

𝑑

𝑑𝑟
(𝑟2

𝑑𝜓

𝑑𝑟
) =

1

𝑟2

𝑑

𝑑𝑟
(−𝛽 + 𝑟

𝑑𝛽

𝑑𝑟
) =

1

𝑟2 (−
𝑑𝛽

𝑑𝑟
+ 𝑟

𝑑2𝛽

𝑑𝑟2
+

𝑑𝛽

𝑑𝑟
) =

1

𝑟

𝑑2𝛽

𝑑𝑟2
 

Hence, the Poisson-Boltzmann equation becomes, 
1

𝑟

𝑑2𝛽

𝑑𝑟2
= 𝜅2

𝛽

𝑟
⇒

𝑑2𝛽

𝑑𝑟2
= 𝜅2𝛽 

To solve the Poisson-Boltzmann equation, 
𝑑2𝛽

𝑑𝑟2
= 𝜅2𝛽 

it is recalled that the differentiation of an exponential function results in the multiplication of that function 

by the constant in the exponent. Thus, if 𝛽(𝑟) = 𝑒±𝜅𝑟,  
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∴
𝑑

𝑑𝑟
𝑒±𝜅𝑟 = ±𝜅𝑒±𝜅𝑟   and  

𝑑2

𝑑𝑟2
𝑒±𝜅𝑟 = 𝜅2𝑒±𝜅𝑟 

If 𝛽 is an exponential function of 𝑟, one will obtain a differential equation of the form 𝑑2𝛽 𝑑𝑟2 = 𝜅2𝛽⁄ . Two 
possible exponential functions, 𝑒−𝜅𝑟 and 𝑒+𝜅𝑟, will lead to the same final differential equation. 

∴ 𝛽(𝑟) = 𝐴𝑒−𝜅𝑟 + 𝐵𝑒+𝜅𝑟 ⇒
𝛽(𝑟)

𝑟
= 𝜓(𝑟) =

𝐴𝑒−𝜅𝑟

𝑟
+

𝐵𝑒+𝜅𝑟

𝑟
 

∴ 𝜓(𝑟) =
𝐴𝑒−𝜅𝑟

𝑟
+

𝐵𝑒+𝜅𝑟

𝑟
 

Applying a suitable boundary condition (𝑟 → ∞,  𝜓 → 0), we obtained 𝐵 = 0. 

∴ 𝜓(𝑟) =
𝐴𝑒−𝜅𝑟

𝑟
 

https://meet.google.com/beq-bejw-vqz


GOOGLE MEET LINK: https://meet.google.com/beq-bejw-vqz (CLASS-14, 31/05/2024) 

PG SEMESTER-IV 2023-2024 (PHYSICAL CHEMISTRY SPECIALIZATION) / CEM 403 / UNIT-5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://meet.google.com/beq-bejw-vqz


GOOGLE MEET LINK: https://meet.google.com/beq-bejw-vqz (CLASS-14, 31/05/2024) 

PG SEMESTER-IV 2023-2024 (PHYSICAL CHEMISTRY SPECIALIZATION) / CEM 403 / UNIT-5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://meet.google.com/beq-bejw-vqz


GOOGLE MEET LINK: https://meet.google.com/beq-bejw-vqz (CLASS-14, 31/05/2024) 

PG SEMESTER-IV 2023-2024 (PHYSICAL CHEMISTRY SPECIALIZATION) / CEM 403 / UNIT-5 

The Debye-Hückel theory is in general valid for appreciably dilute solutions only. To evaluate the integration 
constant 𝐴, a hypothetical condition is considered in which the solution is so dilute and on the average the 
ions are so far apart that there is a negligible interionic field. Further, the central ion is assumed to be a point 

charge → having a radius negligible compared with the distances otherwise to be considered. Hence, the 
potential near the central ion is, in this special case, is simply that due to an isolated point charge of value 
𝑧𝑖𝑒. This is given directly from Coulomb's law as  

𝜓(𝑟) =
𝑧𝑖𝑒

𝐷𝑟
 

At the same time, for this hypothetical solution in which the concentration tends to zero, that is, 𝑛𝑖 → 0, so 
that, 

𝜅 = (
4𝜋𝑒2

𝐷𝑘𝑇
∑𝑛𝑖𝑧𝑖

2

𝑖

)

1 2⁄

→ 0 

Therefore, the term 𝑒−𝜅𝑟 in 𝜓(𝑟) = 𝐴𝑒−𝜅𝑟 𝑟⁄  goes to unity as 𝜅 → 0. 
∴ 𝜓(𝑟) = 𝐴 𝑟⁄  

Thus, from 

𝜓(𝑟) =
𝑧𝑖𝑒

𝐷𝑟
   and    𝜓(𝑟) = 𝐴 𝑟⁄  

we obtain, 𝐴 = 𝑧𝑖𝑒 𝐷⁄  
Therefore, using 𝐴 = 𝑧𝑖𝑒 𝐷⁄ , in 𝜓(𝑟) = 𝐴𝑒−𝜅𝑟 𝑟⁄ , we get, 

𝜓(𝑟) =
𝑧𝑖𝑒

𝐷

𝑒−𝜅𝑟

𝑟
 

This is the solution of the Poisson-Boltzmann equation valid for dilute solutions.  
How do we calculate the total charge associated with the atmosphere/cloud? Consider a spherical shell of 
thickness 𝑑𝑟, at a distance 𝑟 from the centre of the reference ion. Hence, the charge contained in this thin 
shell, 𝑑𝑞, is given by, 𝑑𝑞 = 𝜌 × 4𝜋𝑟2𝑑𝑟, where 4𝜋𝑟2𝑑𝑟 is the volume of this shell. The total charge, 𝑞𝑐𝑙𝑜𝑢𝑑, 
contained in the ion atmosphere is the sum of the charges 𝑑𝑞 contained in all the infinitesimally thick 
spherical shells. Therefore, the total excess charge surrounding the reference ion is computed by integrating 
𝑑𝑞 (which is a function of the distance 𝑟 from the central ion) from a lower limit corresponding to the distance 
from the central ion at which the cloud is taken to commence to the point where the cloud ends. Now, the 
ion atmosphere begins at the surface of the ion, so the lower limit depends upon the model of the ion. The 
first model (Debye and Hückel): point-charge ions; lower limit is 𝑟 = 0. The upper limit is 𝑟 → ∞, because the 
charge of the ionic cloud decays exponentially into the solution and becomes zero only in the limit 𝑟 → ∞. 
Thus, 

𝑞𝑐𝑙𝑜𝑢𝑑 = ∫ 𝑑𝑞

𝑟→∞

𝑟=0

= ∫ 𝜌 × 4𝜋𝑟2𝑑𝑟

𝑟→∞

𝑟=0

= − ∫
𝑧𝑖𝑒

4𝜋
𝜅2

𝑒−𝜅𝑟

𝑟

𝑟→∞

𝑟=0

4𝜋𝑟2𝑑𝑟 

Therefore, 

𝑞𝑐𝑙𝑜𝑢𝑑 = −𝑧𝑖𝑒 ∫ 𝑒−𝜅𝑟
𝑟→∞

𝑟=0

(𝜅𝑟)𝑑(𝜅𝑟) 

Using the method of integration by parts, ∫𝑣𝑑𝑢 = 𝑢𝑣 − ∫𝑢𝑑𝑣, we get 

∫ (𝜅𝑟)𝑒−𝜅𝑟
𝑟→∞

𝑟=0

𝑑(𝜅𝑟) = [−𝜅𝑟𝑒−𝜅𝑟 −∫
𝑒−𝜅𝑟

(−1)
𝑑(𝜅𝑟)]

𝑟=0

𝑟→∞

= [−𝜅𝑟𝑒−𝜅𝑟 − 𝑒−𝜅𝑟]𝑟=0
𝑟→∞ = [−𝑒−𝜅𝑟(𝜅𝑟 + 1)]𝑟=0

𝑟→∞

= 1 
∴ 𝑞𝑐𝑙𝑜𝑢𝑑 = −𝑧𝑖𝑒 

That is, a central ion of charge +𝑧𝑖𝑒 is enveloped by a cloud containing a total charge of −𝑧𝑖𝑒 → 
Electroneutrality. How is this equal and opposite charge of the ion atmosphere distributed in the space 
around the central ion? From, 

𝜌 = −
𝑧𝑖𝑒

4𝜋
𝜅2

𝑒−𝜅𝑟

𝑟
 and 𝑑𝑞 = 𝜌 × 4𝜋𝑟2𝑑𝑟 

it is seen that the net charge in a spherical shell of thickness 𝑑𝑟 and at a distance 𝑟 from the origin is  
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𝑑𝑞 = −𝑧𝑖𝑒𝜅
2𝑒−𝜅𝑟𝑟𝑑𝑟 

Thus, the excess charge on a spherical shell varies with 𝑟 and has a maximum value for a value of 𝑟 given by  

0 =
𝑑𝑞

𝑑𝑟
=

𝑑

𝑑𝑟
[−𝑧𝑖𝑒𝜅

2(𝑒−𝜅𝑟𝑟)] = −𝑧𝑖𝑒𝜅
2
𝑑

𝑑𝑟
(𝑒−𝜅𝑟𝑟) = −𝑧𝑖𝑒𝜅

2(𝑒−𝜅𝑟 − 𝑟𝜅𝑒−𝜅𝑟) 

Since, 𝑧𝑖𝑒𝜅
2 is finite, the above equality can only be true, if, 

0 = 𝑒−𝜅𝑟 − 𝑟𝜅𝑒−𝜅𝑟 ⇒ 𝑟 = 𝜅−1 
Hence, the maximum value of the charge contained in a spherical shell (of infinitesimal thickness 𝑑𝑟) is 
attained when the spherical shell is at a distance 𝑟 = 𝜅−1 from the reference ion. For this reason, 𝜅−1 is 
known as the thickness, or radius, of the ionic atmosphere / cloud that surrounds a reference ion. An 
elementary dimensional analysis of 𝜅−1, using, say, 

𝜅−1 = (
𝐷𝑘𝑇

4𝜋

1

𝑒2∑ 𝑛𝑖𝑧𝑖
2

𝑖
)

1 2⁄

 

will indeed reveal that 𝜅−1 has the dimensions of length. Consequently, 𝜅−1 is sometimes referred to as the 
Debye-Hückel length. As the concentration tends toward zero, the cloud tends to spread out increasingly. To 
get a better feel of these effects, let us perform a thought experiment. Say the charge on the ionic cloud does 
not exist. There is only one charge now, that on the central ion. What is the potential at distance 𝑟 from the 
central ion? It is simply, 

𝜓𝑖𝑜𝑛 =
𝑧𝑖𝑒

𝐷𝑟
 

Let the charge on the cloud be now switched on. The potential 𝜓(𝑟) at the distance 𝑟 from the central ion is 
no longer given by the central ion only. It is given by the law of superposition of potentials, i.e., 𝜓(𝑟) is the 
sum of the potential due to the central ion and that due to the ionic cloud 𝜓(𝑟) = 𝜓𝑖𝑜𝑛 + 𝜓𝑐𝑙𝑜𝑢𝑑. The 
contribution 𝜓𝑐𝑙𝑜𝑢𝑑 can thus be easily found. 

𝜓𝑐𝑙𝑜𝑢𝑑 = 𝜓(𝑟) − 𝜓𝑖𝑜𝑛 =
𝑧𝑖𝑒

𝐷

𝑒−𝜅𝑟

𝑟
−
𝑧𝑖𝑒

𝐷𝑟
=
𝑧𝑖𝑒

𝐷𝑟
(𝑒−𝜅𝑟 − 1) 

We know, that 𝜅 depends on ∑ 𝑛𝑖𝑧𝑖
2

𝑖 . 

For sufficiently dilute solutions, ∑ 𝑛𝑖𝑧𝑖
2

𝑖  can be taken as sufficiently small so that, 𝜅𝑟 ≪ 1. 
∴ 𝑒−𝜅𝑟 − 1 = 1 − 𝜅𝑟 − 1 = −𝜅𝑟, 

and based on this approximation, 

𝜓𝑐𝑙𝑜𝑢𝑑 =
𝑧𝑖𝑒

𝐷𝑟
(𝑒−𝜅𝑟 − 1) = −

𝑧𝑖𝑒

𝐷𝑟
𝜅𝑟 = −

𝑧𝑖𝑒

𝐷𝜅−1
 

Therefore, using 

𝜓𝑖𝑜𝑛 =
𝑧𝑖𝑒

𝐷𝑟
 and 𝜓𝑐𝑙𝑜𝑢𝑑 = −

𝑧𝑖𝑒

𝐷𝜅−1
 

in 

𝜓(𝑟) = 𝜓𝑖𝑜𝑛 + 𝜓𝑐𝑙𝑜𝑢𝑑 =
𝑧𝑖𝑒

𝐷𝑟
−

𝑧𝑖𝑒

𝐷𝜅−1
 

The second term, which arises from the cloud, reduces the value of the potential to a value less than that if 
there were no cloud.  
This is consistent with the model; the cloud has a charge opposite to that on the central ion and must 
therefore alter the potential in a sense opposite to that due to the central ion. 
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Thermodynamics of ion-ion interactions 
Aim: To develop a quantitative measure of the ion-ion interactions. 
Consider, an initial state in which ion-ion interactions do not exist (are “switched off”), and in which ion-ion 
interactions do not exist. The free-energy change in going from the initial state to the final state can be 
considered the free energy of ion-ion interactions, Δ𝐺𝑖𝑜𝑛−𝑖𝑜𝑛. The final state is obvious; it is ions in solution. 
The initial state is not so straightforward; one cannot take ions in vacuum, because then there will be ion-
solvent interactions when these ions enter the solvent. One conceives of a hypothetical situation in which 
the ions are there in solution but are nevertheless not interacting. Now, if ion-ion interactions are assumed 
to be electrostatic in origin, then the imaginary initial state of noninteracting ions implies an assembly of 
discharged ions. 

∴ The initial state of noninteracting ions → final state of ion-ion interactions is equivalent to taking an 

assembly of discharged ions → charging them up and setting the electrostatic charging work equal to the 
free energy Δ𝐺𝑖𝑜𝑛−𝑖𝑜𝑛 of ion-ion interactions. Since, in the charging process, both the positively charged and 
negatively charged ionic species are charged up, one obtains a free-energy change that involves all the ionic 
species constituting the electrolyte. 
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This partial free-energy change is the chemical-potential change, Δ𝜇𝑖𝑜𝑛−𝑖𝑜𝑛

(𝑖)
, arising from the interactions of 

one ionic species with the ionic assembly. To calculate Δ𝜇𝑖𝑜𝑛−𝑖𝑜𝑛
(𝑖)

, let us imagine an ion of species 𝑖 and 

consider that this reference ion alone of all the ions in solution is in a state of zero charge. If one computes 
the work of charging up the reference ion (of radius 𝑟𝑖) from a state of zero charge to its final charge of 𝑧𝑖𝑒, 
then, the work of charging is 𝑊 (say). Then, the partial molar free energy of ion-ion interactions, i.e., to the 
chemical potential of ion-ion interactions is 

Δ𝜇𝑖𝑜𝑛−𝑖𝑜𝑛
(𝑖)

= 𝑁𝐴𝑊 

From electrostatics, the work of charging a conductor,  

𝑊 =
1

2
[(charge on the conductor) × (conductor′s electrostatic potential)] 

∴ Δ𝜇𝑖𝑜𝑛−𝑖𝑜𝑛
(𝑖)

= 𝑁𝐴𝑊 = 𝑁𝐴
1

2
𝑧𝑖𝑒𝜓 

Note that, 𝜓 is the electrostatic potential of the ion due to the influence on it by the electrostatic interactions 

of the surrounding field. Thus, 𝜓 must be 𝜓𝑐𝑙𝑜𝑢𝑑, so that, Δ𝜇𝑖𝑜𝑛−𝑖𝑜𝑛
(𝑖)

= 𝑁𝐴𝑧𝑖𝑒𝜓𝑐𝑙𝑜𝑢𝑑 2⁄ . 

Thus,  

Δ𝜇𝑖𝑜𝑛−𝑖𝑜𝑛
(𝑖)

=
1

2
𝑁𝐴𝑧𝑖𝑒𝜓𝑐𝑙𝑜𝑢𝑑 

We know, 

𝜓𝑐𝑙𝑜𝑢𝑑 = −
𝑧𝑖𝑒

𝐷𝜅−1
⇒ Δ𝜇𝑖𝑜𝑛−𝑖𝑜𝑛

(𝑖)
= −

𝑁𝐴(𝑧𝑖𝑒)
2

2𝐷𝜅−1
 

The Debye-Hückel ionic-cloud model for the distribution of ions in an electrolytic solution has permitted the 
theoretical calculation of the chemical-potential change arising from ion-ion interactions. How is this 
theoretical expression to be checked? For a hypothetical system of ideal (non-interacting) particles, the 
chemical potential is given by 

𝜇𝑖(ideal) = 𝜇𝑖
0 + 𝑅𝑇 ln 𝑥𝑖. 

For a real system of interacting particles, the chemical potential has been expressed in the form 

𝜇𝑖(real) = 𝜇𝑖
0 + 𝑅𝑇 ln 𝑥𝑖 + 𝑅𝑇 ln 𝛾𝑖 . 

Therefore, 

𝜇𝑖(real) − 𝜇𝑖(ideal) = Δ𝜇𝑖𝑜𝑛−𝑖𝑜𝑛
(𝑖) , 

so that, 

Δ𝜇𝑖𝑜𝑛−𝑖𝑜𝑛
(𝑖) = 𝑅𝑇 ln 𝛾𝑖 

Thus, the activity coefficient is a measure of the chemical potential change arising from ion-ion interactions. 

∴ 𝑅𝑇 ln 𝛾𝑖 = −
𝑁𝐴(𝑧𝑖𝑒)

2

2𝐷𝜅−1
⇒ ln𝛾𝑖 = −

𝑁𝐴(𝑧𝑖𝑒)
2

2𝐷𝑅𝑇
𝜅 = −

𝑁𝐴𝑒
2

2𝐷𝑅𝑇
𝜅𝑧𝑖

2 

Thus, the Debye-Hückel ionic-cloud model for ion-ion interactions has permitted a theoretical calculation of 

activity coefficients. In one of our earlier classes (Electrochemistry 1), for a (general) electrolyte 𝐵 ≡ 𝑀𝜈+

𝑧+𝑋𝜈−
𝑧−,  

𝜇𝐵 = 𝜈+𝜇+
0 + 𝜈−𝜇−

0 + 𝑅𝑇 ln 𝛾± (
𝑚±

𝑚0
)
𝜈

= 𝜇𝐵
0 + 𝜈𝑅𝑇 ln 𝛾±

𝑚±

𝑚0
 

where, the geometric mean of molality, 𝑚± = (𝑚+
𝜈+𝑚−

𝜈−)
1 𝜈⁄

 and the geometric mean for the activity 

coefficient 𝛾± = (𝛾+
𝜈+𝛾−

𝜈−)
1 𝜈⁄

, with 𝜈 = 𝜈+ + 𝜈−, and and 𝑚0 is the standard molality (i.e., 1 mol/kg). 

Thus, 

𝜇𝐵 = 𝜇𝐵
0 + 𝜈𝑅𝑇 ln

𝑚±

𝑚0
+ 𝜈𝑅𝑇 ln 𝛾± 
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Now, from 𝛾± = (𝛾+
𝜈+𝛾−

𝜈−)
1 𝜈⁄

, 

ln 𝛾± =
1

𝜈
(𝜈+ ln 𝛾+ + 𝜈− ln 𝛾−) 

From, 

ln 𝛾𝑖 = −
𝑁𝐴𝑒

2

2𝐷𝑅𝑇
𝜅𝑧𝑖

2 

we write, 

ln 𝛾± = −
1

𝜈
[𝜈+

𝑁𝐴𝑒
2

2𝐷𝑅𝑇
𝜅𝑧+

2 + 𝜈−
𝑁𝐴𝑒

2

2𝐷𝑅𝑇
𝜅𝑧−

2] = −
1

𝜈
[
𝑁𝐴𝑒

2

2𝐷𝑅𝑇
𝜅(𝜈+𝑧+

2 + 𝜈−𝑧−
2)] 

Thus, 

ln 𝛾± = −
1

𝜈
[
𝑁𝐴𝑒

2

2𝐷𝑅𝑇
𝜅(𝜈+𝑧+

2 + 𝜈−𝑧−
2)] 

Since the solution as a whole is electroneutral, 𝜈+𝑧+ = 𝜈−𝑧− and therefore, 

𝜈+𝑧+
2 + 𝜈−𝑧−

2 = 𝜈+𝑧+𝑧+ + 𝜈−𝑧−𝑧− = 𝜈−𝑧−𝑧+ + 𝜈+𝑧+𝑧− = 𝑧+𝑧−(𝜈+ + 𝜈−) = 𝑧+𝑧−𝜈 
Therefore, 

ln 𝛾± = −
1

𝜈
[
𝑁𝐴𝑒

2

2𝐷𝑅𝑇
𝜅𝑧+𝑧−𝜈] = −

𝑁𝐴(𝑧+𝑧−)𝑒
2

2𝐷𝑅𝑇
𝜅 

We know, 

𝜅 = (
4𝜋𝑒2

𝐷𝑘𝑇
∑𝑛𝑖𝑧𝑖

2

𝑖

)

1 2⁄

= (
4𝜋

𝐷𝑘𝑇
∑𝑛𝑖𝑧𝑖

2

𝑖

𝑒2)

1 2⁄

 

Since, 

𝑛𝑖 =
𝑐𝑖𝑁𝐴
1000

⇒∑𝑛𝑖𝑧𝑖
2

𝑖

𝑒2 =
𝑁𝐴𝑒

2

1000
∑𝑐𝑖𝑧𝑖

2

𝑖

 

Thus, 

ln 𝛾± = −
𝑁𝐴(𝑧+𝑧−)𝑒

2

2𝐷𝑅𝑇
𝜅   and   𝜅 = (

4𝜋

𝐷𝑘𝑇

𝑁𝐴𝑒
2

1000
∑𝑐𝑖𝑧𝑖

2

𝑖

)

1 2⁄

 

Prior to the development of the Debye-Hückel theory, Lewis introduced the idea of ionic strength, 𝐼, and 
defined it as, 

𝐼 =
1

2
∑𝑐𝑖𝑧𝑖

2

𝑖

 

∴ 𝜅 = (
8𝜋

𝐷𝑘𝑇

𝑁𝐴𝑒
2

1000

1

2
∑𝑐𝑖𝑧𝑖

2

𝑖

)

1 2⁄

= (
8𝜋𝑁𝐴𝑒

2

1000𝐷𝑘𝑇
)

1 2⁄

√𝐼 = 𝐵√𝐼 

Hence, 

ln 𝛾± = −
𝑁𝐴(𝑧+𝑧−)𝑒

2

2𝐷𝑅𝑇
𝐵√𝐼 

In a slightly different way, 

log 𝛾± = −
1

2.303

𝑁𝐴𝑒
2

2𝐷𝑅𝑇
𝐵(𝑧+𝑧−)√𝐼 = −𝐴(𝑧+𝑧−)√𝐼 ,  with 𝐴 =

1

2.303

𝑁𝐴𝑒
2

2𝐷𝑅𝑇
𝐵 

For uni-univalent (1: 1) electrolytes, 𝑧+ = 𝑧− = 1 and 𝐼 = 𝑐, and hence, 

log 𝛾± = −𝐴√𝑐 
 

https://meet.google.com/beq-bejw-vqz

